Ap微积分考试真题
V=∫(0,5) π(2+sinx)^2dx
=π∫(0,5)(4+4sinx+sin^2x)dx
=π(4x-4cosx)|(0,5)+π/2∫(0,5)(1-cos2x)dx
=4π[(5-0)-(cos5-cos0)]+π/2x|(0,5)-π/4∫(0,5)cos2xd(2x)
= 20π-4πcos 5+4π+π/2(5-0)-π/4 sin 2x |(0,5)
= 26.5π-4π×0.2837π/4(sin 10-sin 0)
=26.5π-1.1348π-π/4×(-0.5440)
=25.3652π+0.136π
=25.5012π
=80.07
选择e