求函数导数的问题
f(x)=sinx-cosx+x+1
f '(x)= cosx+sinx+1 =√2 sin(x+π/4)+1
f '(x)= 0 = & gt;sin(x+π/4)=-√2/2 = & gt;X+π/4= 2kπ-π/4或x+π/4 = 2kπ-3π/4。
驻点x = 2kπ-π/2或x = 2kπ-π。
By f' (x) < 0 = >2kπ-3π/4 & lt;x+π/4 & lt;2kπ-π/4,f(x) [2kπ-π的递减区间
通过f′(x)>0 = & gt2kπ-π/4 & lt;x+π/4 & lt;2kπ+5π/4的递增区间,f(x) [2kπ-π/2
f(x) f (kπ) =2+kπ的最大值,
f(x) f (2kπ-π/2)的最小值=2kπ-π/2。
对于0
f(x)的递增区间(0,π)和(3π/2,2π),
f(x) f (π) =2+π的最大值,
f(x) f (3π/2) = 3π/2的最小值。