2009年湖北高考数学题14。

F'(π/4)是f(π/4)的导数,可视为常系数。

因为f(x)=f'(π/4)cos x+sin x,

所以f'(x)=-f'(π/4)sinx+cosx。

所以f '(π/4)=-f '(π/4)sin(π/4)+cos(π/4)。

即f' (π/4) =-√ 2/2f' (π/4)+√ 2/2-①。

f(π/4)=f'(π/4)cos(π/4)+sin(π/4)

所以f (π/4) = √ 2/2f' (π/4)+√ 2/2-②公式。

F(π/4)=1来自①和②。