找一个关于“等差数列前n项之和”的证明。
已知序列{a?n?是等差数列吗,s?n?是它的前n项之和,证明是:s?6?,S-S?6?,S?18?-S成等差数列。设k∈N+,s?k?,S?2k?-S?k?,S?3k?-S?2k?程等差数列。
证明:1 s?6?=6a?+15d..........................................................(1);
S-S?6?=12a?+66d-(6a?+15d)=6a?+51d.......................(2);
s?18?-S=18a?+153d-(12a?+66d)=6a?+87d.................(3);
(2)-(1)=36d,(3)-(2)=36d,两者相等,所以是等差数列。
②S?k?=Ka?+k(k-1)d/2............(4)
s?2k?-S?k?=2ka?+2k(2k-1)d/2-[Ka?+k(k-1)d/2]=ka?+(3k?-k)d/2.........(5)
s?3k?-S?2k?=3ka?+3k(3k-1)d/2-[2ka?+2k(2k-1)d/2]=ka?+(5k?-k)d/2............(6)
(5)-(4)=k?d,(6)-(5)=k?d和2相等,所以是等差数列。