高一三角函数题的解法(2008湖北真题)
g(x)=cosx*f(sinx)+sinx*f(cosx)
= cosx *√[(1-sinx)/(1+sinx)]+sinx *√[(1-cosx)/(1+cosx)]
=cosx*√[(1-sinx)?/(1+sinx)(1-sinx)]+sinx *√[(1-cosx)?/(1+cosx) (1-cosx)]
=cosx*√[(1-sinx)?/(1-sin?x)]+sinx*√[(1-cosx)?/(1-cos?x)]
=cosx*√[(1-sinx)?/cos?x]+sinx*√[(1-cosx)?/罪?x]
= cosx * |(1-sinx)/cosx |+sinx * |(1-cosx)/sinx |
因为x∈(π,17π/12),sinx < 0,cosx & lt0,所以
= cosx *(1-sinx)/(-cosx)+sinx *(1-cosx)/(-sinx)
= -(1-sinx)-(1-cosx)
= -(1-sinx)-(1-cosx)
= sinx+ cosx-2
= √2sin(x+π/4)-2