圆幂定理的真实问题
Pa/sinpba = ab/sinapb,PC/sin PBC = BC/正弦定理的sinbpc
∵pa=pc,sinpba=sinpbc,∴ab/bc=sinapb/sinbpc
AR/RC =角平分线定理的AQ/QC
而正弦定理的pq/sin paq = AQ/sin APB,pq/sinpcq = QC/sinbpc。
∴aq*sinpaq/sinapb=qc*sinpcq/sinbpc
即AQ/QC=AB/AC*sinPCQ/sinPAQ。
∠PCQ=∠QAC,∠PAQ=∠QCA的正切角定理
∴AQ/QC*sinQCA/sinQAC=AB/AC
正弦定理的sin qca/sin qac = AQ/QC
∴(AQ/QC)?=AB/BC
也就是,(AR/RC)?=AB/BC
圆幂定理在哪里?