圆幂定理的真实问题

Pa/sinpba = ab/sinapb,PC/sin PBC = BC/正弦定理的sinbpc

∵pa=pc,sinpba=sinpbc,∴ab/bc=sinapb/sinbpc

AR/RC =角平分线定理的AQ/QC

而正弦定理的pq/sin paq = AQ/sin APB,pq/sinpcq = QC/sinbpc。

∴aq*sinpaq/sinapb=qc*sinpcq/sinbpc

即AQ/QC=AB/AC*sinPCQ/sinPAQ。

∠PCQ=∠QAC,∠PAQ=∠QCA的正切角定理

∴AQ/QC*sinQCA/sinQAC=AB/AC

正弦定理的sin qca/sin qac = AQ/QC

∴(AQ/QC)?=AB/BC

也就是,(AR/RC)?=AB/BC

圆幂定理在哪里?