大一高阶导数,高数,高阶?
(1)填空:
(1)。y=(1+x?)arctanxy'=2xarctanx+(1+x?)/(1+x?)= 2 xarctanx+1;
y''=2arctanx+[2x/(1+x?)];
(2)。y=ln[x+√(1+x?)];y'=[1+x/√(1+x?)]/[x+√(1+x?)]=1/√(1+x?);
y''=[-x/√(1+x?)]/(1+x?)=-x/√(1+x?)?;
(3)。y=xe^(x?);y'=e^(x?)+2x?e^(x?)=(1+2x?)e^(x?);
y''=4xe^(x?)+2x(1+2x?)e^(x?)=(4x?+6x)e^(x?);∴y''(1)=10e;
(4)。f(x)=(x+2)?;f'(x)=3(x+2)?;f ' '(x)= 6(x+2);f'''(x)=6,∴f'''(0)=6;
(5)。y = ln[f(x)];y ' = f '(x)/f(x);y''=[f(x)f''(x)-(f'(x))?]/[f(x)]?;
(6)。y=xe?;y = e?;y ' ' = 0;y ' ' ' = 0;.......;y(?)=0;
(2).设f(x)=xarctan(1/x?),x≠0;f(x)=0,(x = 0);求f'(x)并讨论f'(x)在x=0时的连续性。
解:f'(x)=arctan(1/x?)+x[(-2/x?)/[1+(1/x^4)]=arctan(1/x?)-2x?/(1+x^4);f '(0)=π/2;
F'(0)=?x→0lim[f(0+?x)-f(0)]/?x=?x→0lim[(?x)arctan(1/?x?)]/?x
=?x→0lim[arctan(1/?x?)]=π/2;
∴f'(0)=x→0limf'(x)=π/2,即f'(x)在x=0时是连续的。