高三数学竞赛考什么?
基本要求:掌握初中数学竞赛大纲确定的全部内容。补充要求:面积和面积法。几个重要定理:梅内利奥斯定理、塞瓦定理、托勒密定理、西姆森定理。几个重要的极值:到三角形三个顶点距离之和最小的点——费马点。重心是到三角形三个顶点的距离的平方和最小的点。重心是三角形中三边距离乘积最大的点。几何不等式。简单的等周问题。理解以下定理:在一组有一定周长的N边形中,正N边形的面积最大。在一组具有一定周长的简单封闭曲线中,圆的面积最大。在一组有一定面积的N边形中,正N边形的周长最小。在一组具有一定面积的简单封闭曲线中,圆的周长最小。几何中的运动:反射、平移和旋转。复数法,向量法。平面凸集、凸包及其应用。
2.代数学
在第一个测试大纲的基础上,还需要其他内容:周期函数和周期,有绝对值的函数的图像。三倍角公式,三角形的一些简单恒等式,三角形不等式。第二个数学归纳法。递归,一阶和二阶递归,特征方程法。函数迭代,求n次迭代,简单函数方程。n元平均不等式、柯西不等式、秩不等式及其应用。复数的指数形式,欧拉公式,迪摩定理,单位根,单位根的应用。循环排列,重复排列组合,简单组合恒等式。一元n次方程(多项式)的根的个数,根与系数的关系,实系数方程虚根的配对定理。简单的初等数论题应该包括无限下降法、同余、欧几里德除法、非负最小完全剩余类、高斯函数、费马大定理、欧拉函数、孙子定理、格点及其性质。
3.立体几何
多面体角,多面体角的性质。三面角和直三面角的基本性质。正多面体,欧拉定理。体积证明方法。将制作横断面、剖面图和曲面展开图。
4.平面解析几何
直线的正规公式,直线的极坐标方程,直线束及其应用。二元线性不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。
5.其他人
鸽笼原则。排斥原则。极端原则。集合的划分。掩护。梅内利奥斯定理托勒密定理西姆森线的存在性和性质(西姆森定理)。塞瓦定理及其逆定理。以上是从网上复制的。我刚从高三毕业。我对高中数学竞赛很感兴趣,呵呵。如果是初赛什么的,考试还是平时的内容,但是对知识水平要求比较高,普通题几乎和普通考试一样难。采纳它。