高中数学题目
(1)在矩形ABCD中,AD=BC=4,AB=CD=3,AC=5。
使DE⊥AC在e,
根据射影定理,AD?=AE?AC,AE=16/5,CE=9/5,
PD⊥飞机ABCD,PD⊥DE,
PD=(12/5)√3
PA=√(PD?+AD?)=√33.28=5.768882,
PC=√(PD?+CD?)=√26.28=5.1264,
cos∠ACP= (PC?+AC?爸?)/(2PC?交流)
=(26.28+25-33.28)/51.264
=18/51.264=0.3511236
∠ACP=69.4439
设EF⊥AC在f处穿过PC,∠ECF=∠ACP(同角),
cf = ce/cos∠ECF =(9/5)/0.3511236 = 5.1264
f与p重合,
∠PED是二面角p-AC-d的平面角,
DE=√(AE?CE)=(2/5)√3,
tan∠PED = PD/DE =[(12/5)√3]/[(2/5)√3]= 6
∠PED=80.5377?,二面角p-ac-d = 80.5377?。
(2)三棱锥的体积P-ABC =(1/3)?PD?AD?AB/2 =(1/3)×[(12/5)√3]×4×3/2
=(24/5)√3。