钻石考试真题
解答:延伸DC和A'D ',相交于点m,
∫菱形纸ABCD中∠ A = 60,
∴∠DCB=∠A=60,
∫AB∨CD,
∴∠D=180 -∠A=120,
根据折叠的性质∠a′d′f =∠d = 120,
∴∠fd′m=180-∠a′d′f = 60,
∵d′f⊥cd,
∴∠d′fm=90,∠m = 90-∠FD′m = 30,
∠∠BCM = 180-∠BCD = 120,
∴∠CBM=180 -∠BCM-∠M=30,
∴∠CBM=∠M=30,
∴BC=CM,
设D'F=DF=y,
那么BC=CM=CD=CF+DF=1+y,
∴FM=CM+CF=2+y,
在rt△d′FM中,tanm = tan 30 = d′f/FM = y/(2+y)=√3/3。
∴y=2/(√3-1)=√3+1
∴DF=√3+1