钻石考试真题

解答:延伸DC和A'D ',相交于点m,

∫菱形纸ABCD中∠ A = 60,

∴∠DCB=∠A=60,

∫AB∨CD,

∴∠D=180 -∠A=120,

根据折叠的性质∠a′d′f =∠d = 120,

∴∠fd′m=180-∠a′d′f = 60,

∵d′f⊥cd,

∴∠d′fm=90,∠m = 90-∠FD′m = 30,

∠∠BCM = 180-∠BCD = 120,

∴∠CBM=180 -∠BCM-∠M=30,

∴∠CBM=∠M=30,

∴BC=CM,

设D'F=DF=y,

那么BC=CM=CD=CF+DF=1+y,

∴FM=CM+CF=2+y,

在rt△d′FM中,tanm = tan 30 = d′f/FM = y/(2+y)=√3/3。

∴y=2/(√3-1)=√3+1

∴DF=√3+1