高中几何证明选题
取CD和AC的中点p和q,连接MP,EP,
MQ、BQ
∴mq=1/2cd=ep,bq=1/2ac=mp
∠∠AQB = 2∠ACB = 2∠DCE =∠DPE
∠AQM =∠非加太=∠DPM
∴∠AQB-∠AQM=∠DPE-∠DPM
即:∠ bqm = ∠ MPE
∴△MBQ≌△EMP
∴BM=EM
MQ、BQ
∴mq=1/2cd=ep,bq=1/2ac=mp
∠∠AQB = 2∠ACB = 2∠DCE =∠DPE
∠AQM =∠非加太=∠DPM
∴∠AQB-∠AQM=∠DPE-∠DPM
即:∠ bqm = ∠ MPE
∴△MBQ≌△EMP
∴BM=EM