初三关于“圆”一章的数学题目。

初三数学周末练习题(单元综合测试)

一、多项选择题

1.在下列图形中,不是中心对称的是()

A.圆形b .菱形c .矩形d .等边三角形

2.下列不能与三条边构成直角三角形的数组是()

A.公元前(3.4.5)年(6.8.10)年

3.如图-1所示。In □ABCD,EF|AB。GH|AD。EF和GH相交于o点,那么图形* * *中平行四边形的个数有()。

A.7b 8 c 9d 11

4.如果使用正多边形进行镶嵌,下面正多边形中不能镶嵌到平面的是()。

A.正三角形b .正方形c .正五边形d .正六边形

5.如图2所示。P是Rt△ABC的斜边BC上与B.C .不同的一点,用一条过P点的直线切割△ABC,使切割的三角形与△ABC相似。满足这个条件的直线* * *有()。

A.1条B. 2条C. 3条D. 4条

6.秋千的绳子有3米长。静止时,踏板离地0.5米。一个小孩荡秋千。秋千在最高点踩在踏板上,离地2米(左右对称)。那么挥杆的弧长是()。

A.π米B. 2π米C. 3π米D. 4π米

7.如图3所示。半径为5的In ⊙O,如果弦AB的长度为8。m是弦AB上的动点,OM的长度范围是()。

A.3≤OM≤5 B. 4≤OM≤5 C. 3

8.如图4所示。PA.PB是⊙ O的两条切线,切点是a.b .如果OP=4..那么∠AOB等于()。

A.90 b . 100 c . 100d . 120

9.如图5所示。若正△A1B1C1与正△ABC的内切圆内接,则值为()。

A.B. C. D。

10.如图6所示。在平行四边形ABCD中,∠ DAB = 60。AB = 5。BC = 3。点P从起点D出发,沿DC匀速运动。CB到终点b .点P经过的路径是x .图中被点P经过的线段和线段AD包围的区域。AP是Y.Y。

2.填空

11.等腰三角形的两条边长分别是1厘米和2厘米,所以它的周长是_ _ _ _ _厘米。

12.已知有三个点O (0.0)。A (-1.1)。B (-1.0)。绕O点顺时针旋转△ABO 135。那么A.B点对应的A点。

13.已知五边形的四个内角都是108。那么第五个内角的度数是_ _ _ _。

14.如图-7所示,对角线交流。凸四边形ABCD中的BD相交于O点。如果△AOD的面积是2,△ COD的面积是1,△ Cob的面积是4,那么四边形ABCD的面积是_ _ _ _。

15.当图-8(1)中的梯形满足_ _ _ _条件时,可以旋转折叠成图案(2)。

16.如图9所示。△ABC。AB = AC。∠ A = 45。AC的中垂线应与AB相连。分别为D.E .的AC。链接CD。如果AD=1。那么Tan ∠ BCD = _ _ _ _。

17.两个相切圆的半径分别为8cm和xcm。中心距为3厘米。那么x的值就是_ _ _ cm。

18.如图-10,是小明做的一个锥形帽的示意图。这个纸帽周围的纸面积是_ _ _ cm2。

三。知识的应用

19.如图-11。已知AB|DE。AB=DE。AF=DC图中有几对全等的三角形?选择其中一个来证明。

20.在平面中,如果一个图形绕一个固定点旋转一定角度后能与自身重合,则称为旋转对称图形。旋转角度被称为该图形的旋转角度。例如,一个正方形绕其对角线交点旋转90°后可以与自身重合(如图-12)。所以正方形是旋转对称的图形。它的旋转角度为90度。

(1)判断下列命题是真还是假(在相应的括号内填写[真]或[假])

①等腰梯形是旋转对称图形。它的旋转角度为180,()。

②矩形是旋转对称图形。它的旋转角度为180。()

(2)填空:下列图形中,旋转角度为120°的图形是_ _(写出所有正确结论的序号)。

①正三角形,②正方形,③正六边形,④正八边形。

(3)写出两个多边形。它们都是旋转对称的图形。它们都具有72°的旋转角度,并且它们分别满足以下条件:

①是轴对称图形,但不是中心对称图形。

②它不仅是轴对称图形,也是中心对称图形。

21.用于空投物资的降落伞(如图-13(1))的轴向截面如图-13(2)所示。△ABG是一个等边三角形。C.D是直径为AB的半圆O的两条平分线。CG。DG分别在E点与AB相遇。

回答:

1.D 2。D 3。C 4炸药。C 5。C 6。B 7。一个8。D 9。A 10。A

11.5 12.13.108 14.15

15.底角为60度,上底边等于两个腰的等腰梯形。

16.17.5或11 18。300

19.图中有三对全等的三角形

△ABF≔△十二月份△ABC≔△DEF。△BCF≔△EFC。证明(略)

20.(1)①假②真

(2)①③

(3)①正五边形。

(2)如正十边形和正二十面体。

21.所有点E.F都是线段的平分线。

链接交流。公元前

∵C.D是以AB为直径的半圆的两条平分线。△ABG是一个等边三角形。

∴∠CAB=60 =∠ABG。∠ACB=90

点E是AB和CG的平分线。

同一点F是AB和DG的平分线。