我们来看看这个问题——不定积分三角代换。

设x = asinu,则:

tanu=sinu/√[1-(sinu)^2]=(x/a)/√[1-(x/a)^2]=x/√(a^2-x^2),

dx=[a/(cosu)^2]du。

∴∫[1/(a^2-x^2)^(3/2)]dx

=(1/a^3)∫(cosu)^3[a/(cosu)^2]du

=(1/a^2)∫cosudu

=(1/a^2)sinu+C

=(1/a^2)x/√(a^2-x^2)+C。

∴∫(上限为a/2,下限为0)[1/(a ^ 2-x ^ 2)(3/2)]dx

= (1/a 2) x/√ (a 2-x 2) |(上限为a/2,下限为0)

=(1/a^2)(a/2)/√[a^2-(a/2)^2]-0

=(1/a)/√(4a^2-a^2)

=√3/(3a^2)。