2008年苏州数学试题

解决方案:

(1)OH是Rt△OPC的斜边上的高度,ao = bo =√2;

= = & gt△AOB是等腰Rt△,

= = & gtOH是等腰Rt△AOB的斜边上的中线和垂直线。

= = & gtAH = HB = = OH = AO/√2 =√2/√2 = 1;

P(-2)直线y = kx+b与x轴相交于p (-2,0),

= = & gt0=-2k+b

= = & gtk = b/2;

在C. (0,oc)处与y轴相交

= = & gtOC=-0*k+b

= = & gtb = OC

a和b在直线上y = kx+b,

= = & gt在Rt△PHO中,OH=1,OP=2,

= = & gt& ltHPO=30,

= = & gt在Rt△PCO中,op = 2,

= = & gtOC/OP=1/√3,

= = & gtOC = OP * 1/√3 = 2 * 1/√3 = 2/√3,

= = & gtb=OC=2/√3

= = & gtk=b/2=(2/√3)/2=3/√3

所以:

1)OH的长度= 1;k=3/√3,b = 2/√3;

##