长沙高中数学试卷
你好!!!1,解法:设圆柱体底面半径为x,高度为y..圆柱体的侧面面积是s。
根据意义和已知,有:
x:5=(12-y):12
简化:60-5y=12x
De: y=(60-12x)/5
圆柱体的侧面积为:S=2πxy=2πx[(60-12x)/5]。
即:s =-(24 π/5) x 2+24 π x。
S'=-(48π/5)x+24π
设S'=0,其中:-(48π/5)x+24π=0。
解:x=5/2 (cm) = 2.5cm。
即当x=2.5 cm时,s有一个最大值。
答:只有当缸底半径为2.5cm时,才能有最大的侧面积。
2.设圆锥体的母线长度为L,底面半径为R,
那么底周长s = 2π r,底s = π r 2,边s =ls/2=πlr。
表面积是底部的三倍,S边+S底=3S底,S边=2S底,
πlr=2πr^2,l=2r.
侧面展开图
扇形的圆心角度数n = 180s/πl = 180 * 2πr/2πr = 180;希望能帮到你!!