求几道高中数学题的答案~选填空题

1.∫{ an }是等差数列,容差d=-2。

∫a7是a3和a9的等比例中位数。

∴(a1+6d)?=(a1+2d)(a1+8d)

∴(a1-12)?=(a 1-4)(a 1-16)

解决方法是a1=20。

∴s10=(a1+a10)*10/2=(20+20-18)*5=110

选择?D.110?

2.平面面积M={(x,y)|y≥x,x≥0,x+y≤2}

面积是1

圆的内侧X ^ 2+Y ^ 2 = 1和M的公共部分呈扇形。

面积为圆形的1/8是什么?π/8

概率=(π/8)/1=π/8

选择a. pai /8

3.函数f (x) = {2 x-1,x≥0;

{-(x+1)?+1,x & lt0

F(x)在(-∞,-1)中增加,y的值增加到1。

在递减中,y的值为1,减为0。

在[0,+∞)处增加,y的值从0增加到+∞。

函数y=f(x)-m有三个零点。

即y=f(x)和直线y=m有三个交点。

(画一个图像)

那么实数m的取值范围是(0,1)?