东莞东华小升初三道奥数题

一、填空

1.列车有两列,一列长102米,每秒行驶20米;火车长120米,以每秒17米的速度行驶。两辆汽车朝同一方向行驶。从第一列火车追上第二列火车到两车出发需要多少秒?

2.有人以每秒2米的速度行走。后面来了一列火车,比他多花了10秒。众所周知,这列火车有90米长。求火车的速度。

3.目前,两列火车同时向同一个方向行驶。12秒后,快车超过慢车。快车每秒行驶18米,慢车每秒行驶10米。如果两列火车的尾部齐平,同时向同一个方向行驶,9秒钟后快车超过慢车。求两列火车的车身长度。

4.火车以同样的速度通过440米的大桥需要40秒,通过310米的隧道需要30秒。这列火车的速度和车身长度是多少?

小英和肖敏拿了两个秒表来测量驶过的火车的速度和长度。小英用手表记录下火车从她面前经过的时间是15秒。肖敏用另一块手表记录了他用了20秒钟穿过前面的第一根电线杆和后面的第二根电线杆。已知两根电线杆之间的距离为100米。你能帮助小英和肖敏计算火车的总长度和速度吗?

6.火车以同样的速度通过530米的桥梁需要40秒,通过380米的洞穴需要30秒。求这列火车的速度和车身长度。

7.两人沿着铁路线旁的小路从两个地方出发,以同样的速度行走。一列火车来了,10秒整列火车经过A。3分钟后,B遇到了火车,整个火车只用了9秒就从B身边经过。他们相遇前火车离开B多长时间?

8.两列火车,一列长120米,速度20米每秒;另一列火车长160米,以每秒15米的速度行驶。两辆汽车朝相反的方向行驶。从前面开会到后面离开需要多少秒?

9.有人以每秒2米的速度行走。火车从后面超过他需要10秒。众所周知,这列火车的长度是90米。求火车的速度。

10.甲方和乙方以相同的速度沿着铁路行走。一列火车经过甲方用了8秒,离开甲方5分钟后经过乙方只用了7秒,乙方遇到火车后多少分钟?

第二,回答问题

11.快车长182米,每秒行驶20米,慢车长1034米,每秒行驶18米。两辆汽车同方向平行。当快车车尾与慢车车尾相遇时,快车与慢车交叉需要多长时间?

12.快车长度为182米,慢车长度为1034米,慢车速度为每秒18米。两辆汽车同方向平行。当两车车头对准时,特快列车能在多少秒内穿过慢车?

13.一个人正以每分钟120米的速度沿着铁路奔跑。对面驶来一辆288米长的火车,他用了8秒钟才找到火车的速度。

14.一列火车有600米长。它以每秒10米的速度穿过200米长的隧道。从车头到车尾离开隧道需要多长时间?

———————————回答案例————————

一、填空

120米

102米

17x米

20x米

尾巴

尾巴

1.本题是“两列火车”的追赶问题。这里“追上”是指第一列火车的车头追上第二列火车的车尾,“离开”是指第一列火车的车尾离开第二列火车的车头。

假设从第一列火车追上第二列火车到两列火车出发需要x秒,方程为:

102+120+17x = 20x

x =74。

2.

假设火车的速度是x米每秒,得到方程

10 x =90+2×10

x =11。

3.(

那么快递长度:18×12-10×12 = 96(米)。

(2)车尾成一直线并同时向同一方向行驶,快车。

那么慢车的长度就是18×9-10×9=72(米)。

4.(1)列车速度为:(440-310)÷(40-30)= 13(米/秒)。

(2)体长为:13×30-310=80(米)。

5.(1)列车速度为:100÷(20-15)×60×60 = 72000(m/h)。

(2)体长为:20×15=300 (m)。

6.设火车车体长x米,长y米。

①②

解决

7.设列车车体长x米,A和B各走y米每秒,列车行驶z米每秒。根据问题的意思,列出方程,得到。

①②

①-②,所以:

火车离开B后,他们见面了:

(秒)(分钟)

8.解法:两辆车行驶的距离之和正好是两个列车长的距离之和,那么遇到问题所需的时间是:(120+60)?(15+20)=8(秒)。

9.你这样想:火车经过人的时候,他们的距离差就是列车员。用距离差(90米)除以穿越时间(10秒)得到火车与人的速度差。这个速度差加上人的行走速度就是火车的速度。

90÷10+2 = 9+2 = 11(米)

答:火车的速度是每秒11米。

10.要求当A和B在几分钟后相遇时,必须找出A和B的距离与它们的速度之间的关系,这关系到火车的运动。A和B之间的距离只能通过火车的运动才能找到。火车的运行时间是已知的,所以必须求出它的速度,至少要求出它和A、B的速度之间的比例关系。因为这个问题比较难。

①求列车速度与甲乙速度的关系,设列车长度为L,则:

(I)列车经过A需要8秒,这个过程就是赶上问题:

因此;(1)

(i i)火车经过B需要七秒钟,这个过程是一个相遇问题:

因此。(2)

从(1)和(2),

所以,。

(2)机车相遇A与列车相遇B之间的距离为:

③求机车与B相遇时A与B之间的距离.

机车与A相遇后,机车与B相遇需要(8+5×60)秒,因此,当机车与B相遇时,A与B之间的距离为:

(4)问a、b两人几分钟后见面?

(秒)(分钟)

A:再过一分钟,甲乙双方就要见面了。

第二,回答问题

11.1034÷(20-18)= 91(秒)

12.182÷(20-18)= 91(秒)

13.288÷8-120÷60 = 36-2 = 34(米/秒)

火车的速度是每秒34米。

14.(600+200)÷10=80(秒)

回答:从车头进入隧道到车尾离开隧道需要80秒。