烟台初中数学真题

解法:(1)如图3,将FB扩展到n,使BN=ED,连接an,EF,

∠∠AEP = 90,∠P=30,

∴∠PAE=60,

AB = AD,AD∨BC,

∴∠BAD=∠ABN=∠D,

∫在△阿德和△ABN,

AB=AD ∠ABN=∠ADE BN=DE,

∴△ADE≌△ABN(SAS),

∴AN=AE,∠DAE=∠BAN,

∠∠AD = 120,∠EAF=60,

∴∠NAF=∠EAF,

在△ANF和△AEF,

AF=AF ∠NAF=∠EAF AN=AE,

∴△ANF≌△AEF(SAS),

∴NF=EF,∠AFN=∠AFE,

∫ME∨BC,

∴∠AFB=∠EMF=∠AFE,

∴ME=EF,

∴BF+DE=EM,(2)如图4,将CB延伸到点n使BN=DE,

∫AB = AD = DC,∠BAD=∠ADC=90,

∴四边形ABCD是正方形,

∫在△ABN和△阿德,

AB=AD ∠ABN=∠ADE BN=DE,

∴△ABN≌△ADE(SAS),

∴∠EAD=∠NAB,NF=DE+BF,AN=AE,

∠∠P = 30,∠AEP=90,

∴∠PAE=60,AE PE = 3 3,

∴∠EAD+∠BAF=30,

∴∠BAN+∠BAF=30,

∠NAP=∠P,

∫ME∨BC,

∴∠NFA=∠FME,

∴△ANF∽△PEM,

∴nf em =一个PE,

AN = AE,

∴NF EM =AE PE = 3 3,

∴BF+DE= 3 3我,

(3)使DG∑ab在g点,EK⊥BC在k点,连接EF。

∫公元∨公元前,

∴四边形ABGD是平行四边形,

∫∠BAD = 120,

∴∠ABC=∠C=60,

∴△DGC是一个等边三角形,

设AD=3x,BF=2x,

∫BF+DE = EM,EM=7,

∴DE=7-2x,EC=5x-7,EF=EM=7,

AB = AD,四边形ABGD是平行四边形,

∴AD=BG,

∴BC=6x,FC=4x,

∵EK⊥BC,

∴EK= 3 (5x-7) 2,FK=4x-5x-7 2 =3x+7 2,

∫EF2 = FK2+EK2,

∴(3x+7 2 )2+[ 3 (5x-7) 2 ]2=49,

解方程:x=2,

∴EC=3.