烟台初中数学真题
∠∠AEP = 90,∠P=30,
∴∠PAE=60,
AB = AD,AD∨BC,
∴∠BAD=∠ABN=∠D,
∫在△阿德和△ABN,
AB=AD ∠ABN=∠ADE BN=DE,
∴△ADE≌△ABN(SAS),
∴AN=AE,∠DAE=∠BAN,
∠∠AD = 120,∠EAF=60,
∴∠NAF=∠EAF,
在△ANF和△AEF,
AF=AF ∠NAF=∠EAF AN=AE,
∴△ANF≌△AEF(SAS),
∴NF=EF,∠AFN=∠AFE,
∫ME∨BC,
∴∠AFB=∠EMF=∠AFE,
∴ME=EF,
∴BF+DE=EM,(2)如图4,将CB延伸到点n使BN=DE,
∫AB = AD = DC,∠BAD=∠ADC=90,
∴四边形ABCD是正方形,
∫在△ABN和△阿德,
AB=AD ∠ABN=∠ADE BN=DE,
∴△ABN≌△ADE(SAS),
∴∠EAD=∠NAB,NF=DE+BF,AN=AE,
∠∠P = 30,∠AEP=90,
∴∠PAE=60,AE PE = 3 3,
∴∠EAD+∠BAF=30,
∴∠BAN+∠BAF=30,
∠NAP=∠P,
∫ME∨BC,
∴∠NFA=∠FME,
∴△ANF∽△PEM,
∴nf em =一个PE,
AN = AE,
∴NF EM =AE PE = 3 3,
∴BF+DE= 3 3我,
(3)使DG∑ab在g点,EK⊥BC在k点,连接EF。
∫公元∨公元前,
∴四边形ABGD是平行四边形,
∫∠BAD = 120,
∴∠ABC=∠C=60,
∴△DGC是一个等边三角形,
设AD=3x,BF=2x,
∫BF+DE = EM,EM=7,
∴DE=7-2x,EC=5x-7,EF=EM=7,
AB = AD,四边形ABGD是平行四边形,
∴AD=BG,
∴BC=6x,FC=4x,
∵EK⊥BC,
∴EK= 3 (5x-7) 2,FK=4x-5x-7 2 =3x+7 2,
∫EF2 = FK2+EK2,
∴(3x+7 2 )2+[ 3 (5x-7) 2 ]2=49,
解方程:x=2,
∴EC=3.