解决小学数学非应用题的新思路(三)

第三章对分数掌握的相互理解

分分合合按性质分

在实际生产生活中,人们测量计算时,往往得不到整数的结果。这时就产生了一个新的数分数来表示它。

第一节对分数掌握的相互理解

一、分数的意义

1,单位“1”平均分成若干部分,表示这样一个或几个部分的个数,称为

得分。把一条线段平均分成四份,每份属于它,三份就是它。

关于

(1)平均得分作为分母。

(2)取分子数。

③一个物体,一个计数单位,多个物体,一个集体的人口数,国民生产总值,都可以看作单位“1”;④单位“1”平均分成若干部分,代表一部分的数称为小数单位。

例如,的小数单位是,2的小数单位是。

2、分数与除法的关系

(1)股息红利=红利

分隔线a

(2)用a表示被除数,b表示除数,则a÷b= b(b≠ 0)。

因为除数不能为0,所以分母也不能为0。

3.什么是真实分数?什么是假分数?

(1)分子分数母校的分数叫真分数。

如:……10、11、12、13、14、15、15、16、16、17、18、18、19、19、19、19、19、19、18、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、19、1

②分子大于分母或分子与分母相等的分数称为假分数。

比如:,,,.....都是假分数,假分数大于等于1;

4.什么是分数?

有些假分数可以写成整数和真分数组成的数,通常称为分数;

例如,3、5、7...都是用分数叫的。

第二,整数、假分数和带分数的相互关系

1,整数变成假分数

把整数变成假分数,就是用指定的分母做分母,用分母和整数的乘积做分子;

例如,带有字母4的二进制组件的错误分数为:2=

2.把假分数变成整数。

在一些伪分数中,分子正好是分母的倍数,即分子除以分母得到整数。

比如:

3.把假分数变成分数。

把假分数变成分数,就是把分子除以分母,商就是带分数的整数部分,余数就是分数的分子,分母不变;

例如,=2,=2

4.把乐队配乐变成假配乐。

把带分数变成假分数,用原来的分母做分母,用分母和整数的乘积加上原来的分子做分子,分母不变;

比如8

第二节分和按性质分

一、乐谱的基本性质

1,分数的基本性质是什么/

分数的分子或分母同时被同一个数(0除外)相乘或相除,分数的大小不变;比如:

2.应用分数的基本性质,在下面的括号中填入适当的数字。

(1)因为45÷15=3,即分母放大三倍,所以分子9也要放大三倍,即9×3 = 27;

(2)因为18÷9=2,即分子放大2倍,所以分母也要放大2倍,即15×2 = 30;

二、大致分数

1,大概分数是多少?

把一个分数变成与它相等但分子和分母都较小的分数叫做除数。

2.什么是最简单的分数?

分子和分母都是质数,叫做最简单分数。

举个例子,.............................................................................................................................................................................

3.怎么分?

①一般用分子分母的公约数(1除外)去掉分数的分子分母;

②先求分子和分母的最大公约数,再用公约数去除分子和分母,比较容易;

③一般除以最简单的分数(即分子和分母都是质数);

诸如

三、一般评分|

1,一般分数是多少?

将不同分母的分数除以同分母的分数等于原分数,称为总分数。

2、分享的一般方法

①先找出原分母的最小公倍数作为公分母;

②公分母除以原分母得到的商是多少?

③将原分数的分子和分母乘以得到的商。

分而治之

求8和12的最小公倍数。

2| 8 12

2| 4 6

2 3 2×2×2×3=24

2 24 ÷ 8 = 3,24 ÷ 12 = 2

将原始分数的分子和分母乘以得到的商。

第三节,对比分数。

一、分母相同的分数如何比较?

分母相同的分数,分子大,分子小。

例如,比较和的大小。

二、如何比较同一个分子的分数?

分子相同的分数,较小的分母较大,较大的分母较小。

总和的大小

或者

第三,比较分数的大小

1,整数部分大的波段分值大,整数部分小的波段分值小;

如>

2、分数相同的整数部分,分数部分大,分数部分小。

第四,分母不同、分子不同的分数要先分后比。

1,比较和的大小

因为

因此

2.比较和的大小。

因为如此...

从以上两个问题,得出以下规律:

①先分不同分母的分数;

其次,根据分母相同的分数,分子大的分数大,分子小的分数小。

(3)最后,改成已知份数。

第四季度的百分比

第一,百分比的意义

1,为什么用百分比?

在生产、工作和学习中,为了便于调查、统计、分析和比较,经常用百分数来说明情况,有利于指导实践活动。

2.什么是百分比?

表示一个数是另一个数的百分数的数叫做百分数。百分比也叫百分比。

或者百分比。

第二,阅读和写作的百分比

1,读下面的百分比。

1﹪ 25﹪ 131.7﹪ 215﹪

1 =读取1% 25 =读取25%。

131.7%读131.7% 215%读215%。

记住百分比的发音。

①先读百分号,即“百分比”

(2)按照整数或小数的读数方法,读出分子部分;

2.写出下列百分比。

百分之五,百分之三十,百分之五百和百分之零点九。

写作百分之二十五点七,写作百分之五,写作百分之三十点五

0.9%写作0.9%,25.7%写作25.7%

记住如何写百分比。

(1)先按整数或小数书写,写出百分比的分子部分;

②然后加百分号;

第三,分数、小数和百分数的相互关系

1.将下面的分数小数化。

≈0.333

记住分数小数的方法。

(1)分子除以分母(用不完时,一般除到小数点后第四位,四舍五入到小数点后三位);

(2)分数进小数,一般用分数的整数部分作为小数的整数部分,用分子除以分母的商作为小数部分;

2.十进制下列组件。

0.5 0.35 0.375 1.25

记住如何将小数分成数字:

(1)先将一位小数改写成分母为10的分数,两位小数改写成分母为100的分数,三位小数改写成分母为1000的数...

(2)可以化简为最简单分数的要约;

(3)假分数要换算成分数或整数。

3.将下列分数改写成百分比。

记住分数百分比的方法:

①首先将分数转换成小数;

②小数点右移两位(不够加0),加百分号;

4.将以下百分比改写为组件数量。

记住百分比计分法:

(1)先用100的母把百分比改写成分数;

(2)如果分子是小数,要改写成分子,分母是整数的分数;

(3)可以化简为最简单的分数;

(4)假分数要换算成分数或整数;

5.将下列小数改写成百分数。

0.28=28﹪ 2.05=205﹪

0.045=4.5﹪ 5=500﹪

记住如何将小数改写成百分数。

将小数点向右移动两位,然后添加百分号。

6.将下列百分比改写成小数。

29﹪=0.29 105﹪==1.05

125﹪==1.25 0.6﹪=0.006

记住如何将百分比改写成小数。

将百分比改写成小数,只去掉百分号,小数点左移两位;

....

7.将0.53和0.213分成分量。

A.....

0.5 3 =0.53 ①

....

0.53 ×100==53 .53 ②

........

②-① 0.53 ×100- 0.53=53.53—0.53

..

0.53X(100 - 1)=53

..

0.53X99=53

..53 ..腹肌

0.53 = -也就是0.ab = -。

99 99

B.

....

0.213x 10 = 2.13①

..。。

0.213x 1000 = 213.13②

②-①

........

0.213x 1000 _ 0.213x 10 = 213.13 _ 2.13

..

0.213x990=212

..

0.213= 212 ..abc — a

990表示:0.abc= 990。

练习3,

一、填空

1,单位“1”被平均分成几个部分,代表这样一个或几个部分的数称为();

2.母校的分子分数叫做(),分子大于分母或者分子和分母相等。

3.有些假分数可以写成整数和真分数组成的数,通常称为();

4.把整数变成假分数,就是用指定的分母做()和()的乘积做分子。

5.把假分数变成分数就是把()除以(),商就是分数(),余数就是分数(),分母不变。

6.把带分数变成假分数,用原来的分母为(),用()和()的乘积加上原来的()作为分子,分母不变。

7.分数的分子或分母同时乘以或除以相同的数(0除外),分数的大小()

8.把一个分数变成和它相等但分子分母更小的分数叫做();

9.分子和分母都是(),称为最简分数。

10.把不同的分母分数换成和原来分数相等的同分母分数叫做()。

11,一般除法的一般方法是先找到原分母的()作为公分母;将公分母除以原分母,然后将原分数的分子和分母乘以得到的商。

12,一般的还原方法是用2,3,5,7,11,13,17,19,23,29...来分别降低分数,或者可以用分子和分母(。

13,分母相同的分数,分子大的分数(),分子小的分数()。

14.分子相同的分数,分母较小()分母较大()。

15,带分数的整数部分大(),整数部分小()。

16,整数部分相同则得分;如果小数部分大,就比较();如果小数部分小,就比较();

17,不同分母和不同分子的分数要先除法再比较();

18,表示一个数是另一个数的百分数的数叫做()。也称为()或()。

19,真分数,假分数进小数,一般除以()。

20、用分数进小数,一般用分数()作为小数的整数部分,用分子除以分母的商作为();

21.十进制化成元件数。首先,将小数改写成组成字母10、100、1000...(),然后近似成()分;

22.把分数改写成百分数,先把分数变成();然后将小数点右移两位(不够的话加0)加()

23.将百分比改写为组件的数量。先把百分比改写成()的分数;

能减少的应该变成()

24.将小数点改写成百分数,将小数点向右()两位,加();

25、将百分数转换成小数时,只去掉(),同时将小数点移动()两位;

第二,判断正误(正确的打“√”,错误的打“×”)

1的小数单位是()

2、有7个()

3、5公斤和1公斤的重量相同()

4.1中有7或99()。

5.虚假分数是分子大于分母的数字()

6.分数都小于整数()

7.分数的分子和分母都乘以或除以同一个数,分数的大小保持不变()

8.大于和小于的分数仅为()

9.分数的分子和分母要展开5倍,分数值也要展开5倍()

10,分数的分母越大,小数单位就越小()

11,的分子和分母都加1,分数的大小不变()。

12,一个分数的分子和分母都是质数,一定是最简单的分数()。

13,一个分数的分母不变,分子缩小5倍,其分数值缩小5倍()

14,因为=,它们的小数单位相同()

15,把一个假分数的分子和分母反过来得到一个真分数()

三、选择题(选择正确答案号,填入括号内)

1.把班级平均分成9组,其中女生4组,占班级的()。

① ② ③ ④

2、5厘米=()米

① ② ③ ④

3.在中,a是自然数,而a()是真分数。

①a=8 ②a<8 ③a>8 ④0

4.在中,a是整数,而当a()是假分数时。

①a = 10②a > 10③a < 10④a≥10

在5的分子上加5。要保持小数值不变,分母要乘以()。

①1 ②2 ③3 ④4

6.分母为5的最简单分数有()个。

数不清

7.分子和分母是两个相邻的自然分数()最简单分数。

①肯定是②没有③不一定。

在8的分母上加5。要保持小数值不变,请在分子中添加()。

①2 ②3 ③4 ④5

9.如果总成绩里有分数,就分分数部分和整数部分()

(1)删除(2)也划分(3)不变。

10,一个分数用2约两次,3约一次,得到。这个分数分子和分母的最大公约数是()

1 4 2 6 3 12 4 24 4.完成下列练习。

1.看图,在()中填入适当的数字。

0∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

↑———————————————1米

()m () m () m () m () m

|||||||↓

0 —— ↑——↑————— ↑——————↑———↑

( )()()()()

∣ ——∣ —∣—— ∣

()

2、①读作()

2发音为() ()

②十分之七写作();十九又二分之一写作()

③20分= () 188kg =()吨。

④45米=()公里47分钟=()

3.填写">","

4.按从小到大的顺序排列下列数字。

① ② ③

④ ⑤ ⑥

⑦ 0.45.

5.把下面的分数简化成最简单的几点。

6.分以下几组的分数。

7.抽取下列分数。

8.十进制下列组件。

0.7 4.5 0.84 0.125 0.32 0.07 3.6 8.375

9.将下列小数转换成百分数。

0.3 0.44 0.395 1.21 2.1 1.125 0.6 0.05

10,把下面的分数变成百分比。

11.用小数表示下面的百分比。

0.5﹪ 0.75﹪ 51﹪ 49﹪

12.5﹪ 0.45 ﹪ 200.5﹪ 67﹪

12,以下成分的百分比。

14.5﹪ 3.5﹪ 46﹪ 75﹪

36﹪ 168﹪ 105﹪ 375﹪

13,把下面的假分数变成整数或分数。

14.将下列整数化为分数或假分数。

2 6 8=

6 17 33

15.按要求用下列分数填圆。

真分数带分数的假分数