物理天体的真实问题
下面我给出最好的答案。
命题意图:考察考生吸收提炼信息、获取新知识和空间想象的能力。
错解分析:面对冗长的问题,考生不能快速阅读题意获取信息,不能透彻理解探测器的发射场景,找不到清晰的解答。
解决问题的方法和技巧:(题目中的信息:“从地面向火星发射火星探测器两步走……”说明为了让探测器在火星着陆,需要选择一个合适的时间点燃探测器上的发动机,使探测器沿着椭圆轨道到达火星轨道的切点,同时火星正好运行到这个点,所以必须先确定两者的相对位置。)
因为探测器在地球轨道上的运行周期Td等于地球的公转周期Te:Td = Te = 365天。
点火前探测器绕太阳的角速度ωd =ωe = = 0.986/天。
探测器沿着椭圆轨道的半长轴:rd = = 1.25r0。
来自开普勒第三定律
探测器在椭圆轨道上的运行周期为t′d = Te = 365×1.400天= 510天。
所以探测器从点火到到达火星需要时间:t = = 255天。
火星公转周期:TM = TE = 365× 1.840天= 671天。
火星绕太阳的角速度;
ωm = = 0.537/天
由于探测器前往火星需要255天,因此在此期间火星绕太阳运行的角度为:
θ1 =ωmt = 0.537×255 = 137
即探测器在椭圆轨道近日点点火时,火星在远日点切点前137。
即火箭发动机点火时,探测器与火星的角距离应为θ 2 = 180-θ 1 = 43(如图3)。
已知1年3月0时,探测器与火星的角距离为60°(火星在前,探测器在后)。为了使角距变成θ2 = 43°,我们必须等待t '时间。
则:ωdt′-ωmt′= 60-43 = 17。
所以:t' = = days ≈38天。
所以发动机的点火时间应该是当年3月1之后的38天,也就是4月7日。