人教版初二数学上册期中考试试题及答案
1.(南京,2008)2的平方根是()
A.公元前四世纪。
2.(武汉2008年)计算的结果是()
A.2b . 2c-2d . 4
3.下列说法正确的是()
A. 1的平方根是1 B. 1是1的平方根。
C.-1是-1的平方根。D. 0没有平方根。
4.在下列公式中,正确的是()
A.=-2B。=2 C. = 2 D. =2
5.下列说法正确的是()
A. 27的立方根是3b .-立方根是
C.-2是-8的平方根。d-27没有立方根。
*6.如果= 4-k,k的取值范围是()
A.k ≥ 4 b.k ≤ 4 c.k = 4 d.k为任意数。
* 7.(浙江湖州,2007)+2的估计值在()。
在A. 5和6之间,B. 6和7之间,C. 7和8之间,D. 8和9之间。
**8.当x =-3时,正或负的值是()。
A.-3 B. 3 C. 3 D. 9
*9.一个数的算术平方根等于它本身,那么这个数就是()。
A.1和-1b.1和0c.1d.1,0,-1。
**10.如果有意义,A能取的最小整数是()。
A.0 B. 1 C. -1 D. -4
**11.如果的平方根是2,那么a的值是()。
A.16
**12.如果一个自然数的算术平方根是A,那么它的下一个自然数的算术平方根是()。
A.a+1 B .
2.填空
1的算术平方根。是_ _ _ _ _ _ _ _ _,3的算术平方根是_ _ _ _ _ _ _ _。
2.如果x2+1 = 6且x > 0,则x = _ _ _ _ _ _ _。
3.计算:()2 = _ _ _ _ _ _ _,= _ _ _ _ _ _ _,()2 = _ _ _ _ _ _ _ (A ≥ 0)。
4.立方体的表面积是150cm2,立方体的边长是_ _ _ _ _ _ _ _。
5.一个数的算术平方根等于这个数的立方根,这个数是_ _ _ _ _ _ _ _ _。
6.(河北2007年)比较大小:7 _ _ _ _ _ _ _ _。(填写>、<或=)
7.(2008年安徽)简化= _ _ _ _ _ _ _。
8.(长沙,2008)已知A和B是两个连续的整数,A < < B,则A+B = _ _ _ _ _ _ _。
9.(连云港,2008)如果2A-18 = 0,那么A的算术平方根是_ _ _ _ _ _ _ _ _。
**10.如果一个正数的平方根是2a,A-1,那么这个正数就是_ _ _ _ _ _ _ _。
*11.如果| A | = 3,= 2,AB < 0,则A-B的值为_ _ _ _ _ _ _ _ _。
* * 12.(河南省,2007)已知X为整数且-≤ X ≤,则X = _ _ _ _ _ _ _。
**13.当x _ _ _ _ _ _ _ _ _时,有意义;+=__________.
三。解决问题
1.求下列数字的平方根和算术平方根。
(1) (2)0.0081
(3)(-)2 (4)14
2.求下列数字的立方根。
(1)0.001 (2)-216
(3)3 (4)-3
3.在下列类别中找到x。
(1)9x2-256=0
(2)4(2x-1)2=25
*4.已知:(1-2a) 2+= 0,求ab的值。
5.如果3x+16的立方根是4,求2x+4的算术平方根。
四。实际应用问题
1.计划使用100地砖铺设客厅,面积为16m2。所需方形地砖的边长是多少?
*2.已知第一个立方体纸盒的边长为6cm,第二个立方体纸盒的体积比第一个纸盒大127cm3。找出第二个立方体纸盒的边长。
1.(佛山,2007)下列说法正确的是()
A.无限小数是无理数b .无环小数是无理数。
C.无理数或无理数的反义词d .两个无理数的和仍然是无理数
2.与数轴上的点一一对应的数是()
A.实数b .有理数c .无理数d .整数
3.(广西桂林,2008)下列实数中,无理数是()。
A.0.b .πc-4d。
4.(2008年新疆)的倒数是()
A.-公元前-公元前。
5.(湖北襄樊,2008)下列说法正确的是()
A. 4的平方根是2。
B.将点(-2,-3)向右移动5个单位长度到点(-2,2)。
C.是一个无理数
d点(-2,-3)关于x轴的对称点是(-2,3)。
* 6.(重庆2008年)计算的结果-是()
A.公元前6年到公元前2年。
7.(广州,2008)如果实数A和B相反,下列等式是()。
A.a-b = 0 b . a+b = 0 c . ab = 1d . ab =-1
*8.下列说法正确的是()
A.5 < b .-->-c .-2 < d . 0 <
*9.如果=-a,实数A在数轴上的对应点一定是()。
A.原点的左侧b .原点的右侧
C.原点和原点的左侧
**10.设a > 0,那么A和大小的关系是()。
A.a > B.A = C.A < D .以上结论都可能成立。
*11.满足-< x <的整数个数是()。
A.6 B. 5 C. 4 D. 3
**12.如果A和B都是实数,下列说法正确的是()。
A.如果a > b,a2 > b2b。如果a > | b |,a2 > B2。
C.如果| a | = () 2,那么a = b d .如果a3 > B3,那么a2 > B2。
2.填空
1.-2中的无理数。,,-,,,π,0是_ _ _ _ _ _ _ _ _。
2.绝对值最小的实数是_ _ _ _ _ _ _ _。
3.-1的倒数是_ _ _ _ _ _ _ _,绝对值是_ _ _ _ _ _ _ _。
*4.比较大小:0.34 _ _ _ _ _;-_____-1.42。
5.化简:| 1-| = _ _ _ _ _ _ _,= _ _ _ _ _ _ _,|-1.74 | = _ _ _ _ _ _ _ _。
* 6.(浙江杭州,2008)把大于-1的负有理数写成_ _ _ _ _ _ _ _ _;大于-1的负无理数是_ _ _ _ _ _ _ _。
7.(2008年宁夏)计算:5-= _ _ _ _ _ _ _ _。
* * 8.(宜宾,2007)数学家发明了一个魔盒。当任何一个实数对(a,B)进入其中,都会得到一个新的实数:A2+B+1。比如把(3,-2)放进去,会得到32+(-2)+1。
三。解决问题
1.(2008年海南)计算:+(-12) ×-(-1) 2。
2.比较下列各组的大小。
(1)-和-3
(2)以及
3.写出满足下列条件的数字。
(1)绝对值小于的所有整数之和;
(2)绝对值小于8的所有整数。
**4.已知5+的小数部分是A,5-的小数部分是B,求A+B的值..
**5.设x,y为有理数,满足方程x+2y-y = 17+4,求(+y) 2008的值。
**6.已知b
测试答案
一、多项选择题
1.D 2。A 3。B 4。D 5。C 6。C 7。B 8。B 9。B 10。A 11。B 12。D
2.填空
1.2, 2.3.四五四。5cm 5。0或1 6。< 7.48.59.3 10.11.5或-5 12。
三。解决问题
1.(1)平方根是:正或负,算术平方根是:
(2)平方根是0.09,算术平方根是0.09。
(2)平方根为:正或负,算术平方根为:
(2)平方根为:正或负,算术平方根为:
2.(1)0.1 (2)-6 (3) (4)-
3.(1)x2=,x=
(2)把2x-1作为一个整体,2x-1 =+。当2x-1 =,x =;当2x-1 =-,x =-
4.∫(1-2a)2≥0,≥0,(1-2A) 2+= 0,∴ (1-2A) 2 = 0,= 0,∴ 65438+。
5.∵ 3x+16的立方根是4,∴ 3x+16的算术平方根= 43,∴ x = 16,∴ 2x+4 = 36,∴ 2x+4的算术平方根=
四。实际应用问题
1.每块正方形地砖的面积为16÷100 = 0.16(m2),正方形地砖所需边长= 0.4 (m)。
2.第一个立方体的体积是63 = 216 (cm3),第二个立方体的体积是216+127 = 343 (cm3),第二个立方体的长度是= 7 (cm)。
一、多项选择题
1.C 2。A 3。B 4。A 5。D
6.D 7。B 8。C 9。C 10。D 11。B 12。B
2.填空
1.-,,,π 2.0 3.1-,-1
4.<,> 5.-1,-1,1.74- 6.-;-(不唯一)
7.3 8.66
三。解决问题
1.原公式= 4-6-1 =-3
2.(1)>(2)<
3.(1)0(2) 7, 6, 5, 4, 3, 2, 1,0
4.a=-2,b=3-,∴a+b=1
5.从题中的意思可以得到X = 25,Y =-4,∴原公式= (5-4) 2008 = 1的解。
6.A = 3,∴ b
想要别的加QQ;867180583