八年级急求上海理科版数学期中试卷!!!
类别:
学生编号:
名称:
分数:
一,
多项选择
1.
下列各组是三角形三条边的长度,能构成直角三角形的组是(
)
A.
3,4,5
B.
7,12,15
C.
13,16,20
D.
8,24,25
2.
下列说法正确的是(
)
A.
无理数包括正无理数和负无理数
B.
实数只包括有理数和无理数
C.
无理数是无限小数。
D.
没有根号的数是有理数。
3.
下列既轴对称又中心对称的图形是(
)
A.
菱形、正方形、圆形
B.
平行四边形、菱形、正方形
C.
等腰梯形、矩形、正方形
D.
正三角形、矩形、圆形
4.
下列性质中,菱形有而矩形没有的是(
)
A.
内角之和等于3600。
B.
对角线平分一组对角线。
C.
对角线相等
D.
邻角互补
5.
下列形状和大小完全相同的图形不能密铺的是(
)
A.
正六边形
B.
正多边形
C.
平行四边形
D.
等腰三角形
6.
以下命题:①平行四边形的对角线等分。
②对角线被二等分的四边形是平行四边形③正方形的对角线互相垂直。
(4)对角线互相垂直的四边形是正方形,其中正确的是(
)
A.
四
B.
三
C.
二
D.
1
7.
下列分类中,正确的是(
)
A.
B.
C.
D.
8.
在图形的旋转中,下列说法错误的是(
)
A.
图上的每一点都以相同的角度移动。
图上任意两点的边都等于这两点的边。
C.
图上每个点的旋转中心之间的距离是相等的。
D.
图上可能有固定的点。
9.点P (-4,1)在平面直角坐标系中的象限是(
)
A.
四
B.
三
C.
二
D.
一个
10.
一个游客为了爬到3公里高的山顶看日出,先用1小时爬了2.4公里,休息了1小时,再用1小时爬到山顶。游客爬山时间t(小时)与山高h(千米)的函数关系如图(
)
A
B
C
D
第二,
填空题
1.
4的平方根是
8的立方根是
的算术平方根是
2.
直角三角形的右边长3厘米,斜边长5厘米,所以斜边的高度是
3.
五边形的内角之和是
十边形的外角之和为
4.
如四边形ABCD所示,对角线AC和BD相交于
点o,当条件满足时。
什么时候,
它是一个平行四边形。(只需填写一个你认为正确的条件)
5.
如果一条直线在
,当x = 1时,y = 2;当x = 0且y = 3时,直线的表达式为
6.
对于函数
,y带x
并减少。
7.
点A(3,2)相对于X轴对称点B的坐标为
8.
钻石的周长是40厘米,对角线的长度是12厘米,所以这个钻石的面积是
9.
已知矩形的两条对角线的交角为600,矩形的短边为4cm,所以它的对角线长。
厘米,长边是
厘米.
第三,
计算
1.
2.
第四,
如图,四边形ABCD为矩形,对角线AC和BD相交于O,CE‖DB和AB的延长线E,证明AC = CE。
五,
如图,已知在△ABC中,AD平分∠BAC,DE‖AC,DF‖AB。
(1)试证明四边形AEDF的形状。
⑵当△ABC满足什么条件时,四边形AEDF是正方形。为什么?
六,
某食品厂卖饼干到A市,铁路托运的话每公斤0.58元,公路运输的话每公斤0.28元,还需要出差补贴600元。
(1)工厂销售X公斤饼干到A市,运费铁路为y1元,公路为y2元。分别写出两种运输方案的费用Y和X的关系。
(2)多少公斤的饼干卖给A市,两种配送方案的成本一样吗?
⑶假设卖出的饼干重量为2500 kg,讨论哪种配送方案更划算。
七,
已知A在B南方3km处,A和B正方向匀速直线前进。它们离A的距离S(km)和它们的旅行时间t(h)的关系如图,其中l1代表A的运动过程,l2代表b的运动过程,根据图像回答:
(1)
哪个在A处,哪个在B处?
(2)
A用了多长时间才追上B?
(3)
求l1,l2的函数表达式?
(4)
当两人再次相距3km时,通过计算解释。