一个高数问题中反常积分的敛散性:如果收敛,求其值。
I =∫& lt;1,+∞& gt;dx/[x√(2x^2-2x+1)=∫& lt;1,+∞& gt;dx/[x√[2(x-1/2)^2+1/2]
=(1/√2)∫& lt;1,+∞& gt;dx/[x√[(x-1/2)^2+1/4]
设x-1/2 = (1/2) tants,则√[(x-1/2)2+1/4]=(1/2)Sect,
x = (1/2)(1+tant),dx = (1/2)(sect)^2 dt
I =(1/√2)∫& lt;π/4,π/2 & gt;(1/2)(sect)^2 dt/[(1/2)(1+tant)(1/2)Sect]
=√2∫& lt;π/4,π/2 & gt;secdt/(1+tant)=√2∫& lt;π/4,π/2 & gt;dt/(成本+烧结)
=∫& lt;π/4,π/2 & gt;dt/cos(t-π/4)=∫& lt;π/4,π/2 & gt;秒(t-π/4)d(t-π/4)
= { ln[sec(t-π/4)+tan(t-π/4)]} & lt;π/4,π/2 & gt;
= ln[sec(π/4)+tan(π/4)]-ln[sec 0+tan 0]
= ln(1+√2)-ln 1 = ln(1+√2)