已知函数的极限是参数的值。
(x→∞)lim[(x?+1)/(x+1)-ax-b]
=(x→∞)lim[(x?-1+2)/(x+1)-ax-b]
=(x→∞)lim {[(x+1)(x-1)+2]/(x+1)-ax-b }
=(x→∞)lim[x-1+2/(x+1)-ax-b]
=(x→∞)lim[(1-a)x-(1+b)]
=4
1-a=0,-(1+ b)=4
a=1,b=-5
=(x→∞)lim[(x?-1+2)/(x+1)-ax-b]
=(x→∞)lim {[(x+1)(x-1)+2]/(x+1)-ax-b }
=(x→∞)lim[x-1+2/(x+1)-ax-b]
=(x→∞)lim[(1-a)x-(1+b)]
=4
1-a=0,-(1+ b)=4
a=1,b=-5