高考解三角函数题
sinA+sinB=sinC………………(1)
cosA+cosB=cosC………………(2)
从(2) 2-(1) 2
cos2A+cos2B+2(cosa cosb-Sina sinb)= cos2C
so 2cos(a+b)cos(a-b)+2cos(a+b)= cos2c.............(3)
它也是由(1) 2+(2) 2导出的。
2+2(cosAcosB+sinAsinB)=1
因此,COSA COSB+Sina sinb = COS(A-B)=-1/2.......................................(4).
所以从(3)
2 cos(A+B)*(-1/2)+2 cos(A+B)= cos2C
所以cos2c = cos(a+b)= cosa cos b-Sina sinb...........................................................(5)
然后从(4)-(5)得到
2sinAsinB=-1/2-cos2C
因此
正弦平方A+正弦平方B+正弦平方c
=(sina+sinb)^2-2sinasinb+(sinc)^2
=2(sinC)^2-(-1/2-cos2C)
=2(sinC)^2+1/2+cos2C
=2(sinc)^2+1/2+1-2(sinc)^2
=3/2