数学大结局。。。。求解答。
解:(1)当t=1,AP=4,CQ=3时
∴PC=AC-AP=16-4=12,
∴S△PCQ=12PC?CQ = 12×12×3 = 18(cm2),S△ABC=12AC?BC = 12×16×12 = 96(cm2),
则S=S四边形apqb = S△ABC-S△pcq = 96-18 = 78(cm2);
当0 < t < 4,AP=4t,CQ=3t时,
∴CP=16-4t
∴S△PCQ=12PC?CQ = 12×(16-4t)×3t = 24t-6 T2(cm2),
∴S=S四边形apqb = s△ABC-s△pcq = 96-(24t-6 T2)= 6 T2-24t+96 = 6(t-2)2+72(cm2)
∫(t-2)2≥0,
∴S≥72,
那么当t=2s时,四边形APQB的面积取最小值72cm2;
(2)将QO推广到Q’,使OQ’= OQ,连接一个Q’,P Q’,
如果有一个t值使得OP⊥OQ,那么OP将q垂直除以q’
∴pq′=pq,
∴PQ2=PQ2,
OA = OB,∠AOQ′=∠BOQ,OQ′= OQ,
∴△aoq′≌△boq,
∴aq′=bq=12-3t,∠oaq′=∠b,
从∠ c = 90 ∠ cab+∠ b = 90,
∴∠ cab+∠ OAQ' = 90,即∠ PAQ' = 90,)
由勾股定理可知:PQ2 = AP2+AQ2 =(4t)2+(12-3t)2、
在Rt△PCQ中,pq2 = pc2+cq2 =(16-4t)2+(3t)2
∴(4t)2+(12-3t)2=(16-4t)2+(3t)2,
解:t=2,
∴有一个t值。当t=2(s)时,OP ⊥ OQ。