数学大结局。。。。求解答。

解:(1)当t=1,AP=4,CQ=3时

∴PC=AC-AP=16-4=12,

∴S△PCQ=12PC?CQ = 12×12×3 = 18(cm2),S△ABC=12AC?BC = 12×16×12 = 96(cm2),

则S=S四边形apqb = S△ABC-S△pcq = 96-18 = 78(cm2);

当0 < t < 4,AP=4t,CQ=3t时,

∴CP=16-4t

∴S△PCQ=12PC?CQ = 12×(16-4t)×3t = 24t-6 T2(cm2),

∴S=S四边形apqb = s△ABC-s△pcq = 96-(24t-6 T2)= 6 T2-24t+96 = 6(t-2)2+72(cm2)

∫(t-2)2≥0,

∴S≥72,

那么当t=2s时,四边形APQB的面积取最小值72cm2;

(2)将QO推广到Q’,使OQ’= OQ,连接一个Q’,P Q’,

如果有一个t值使得OP⊥OQ,那么OP将q垂直除以q’

∴pq′=pq,

∴PQ2=PQ2,

OA = OB,∠AOQ′=∠BOQ,OQ′= OQ,

∴△aoq′≌△boq,

∴aq′=bq=12-3t,∠oaq′=∠b,

从∠ c = 90 ∠ cab+∠ b = 90,

∴∠ cab+∠ OAQ' = 90,即∠ PAQ' = 90,)

由勾股定理可知:PQ2 = AP2+AQ2 =(4t)2+(12-3t)2、

在Rt△PCQ中,pq2 = pc2+cq2 =(16-4t)2+(3t)2

∴(4t)2+(12-3t)2=(16-4t)2+(3t)2,

解:t=2,

∴有一个t值。当t=2(s)时,OP ⊥ OQ。